Micro-mapping with Smartphones for Monitoring Agricultural Development

Lutz Frommberger, Falko Schmid, Chunyuan Cai

Monitoring Development by **Crowdsourcing Geo-data**

- Geographic data of critical importance for monitoring development
- Ideally assigned to local stakeholders
- Volunteered Geographic Information (VGI)

Micro-mapping

- Assesses small objects where size and dimensions are relevant
- Goes beyond pin-point mapping
- Full geodetic properties for further analysis

maplT: Mapping Original Geometry with 5 Clicks

- Intuitive, barrier-free interaction
- Allows for usage by people with minor technical skills
- Geometry calculation based on smartphone and camera sensors
- WYSIWYM: What you see is what you map

Application Scenarios

- Statistical information about agricultural development
- Monitoring progress and impact of projects
- On-site information in disaster cases (flooded areas, plant diseases, etc.)
- Documenting archaeological sites, polluted areas, etc.

The mapIT Workflow

Taking a photo

The user takes a geo-referenced photo of the targeted object.

Outlining the object

The user uses the touchscreen to draw the outline of the object. The location of the segmented object is automatically calculated.

Annotating by speech

The user semantically annotates the geoobject via speech input, pulldown menu or text.

Uploading to a geo-server

The annotated geo-object is uploaded to a geo-server of choice with one click.

Inspecting entity

Finally, the geo-object is ready to inspect, edit, and use (in Google Maps or Open-StreetMap, e.g.)

